
Abstract —Fast expansion of Advanced Driver Assistance 
Systems (ADAS) market and applications has resulted in a 
high demand for various accompanying algorithms. In this 
paper we present an implementation of Driver monitoring 
algorithm. Main goal of the algorithm is to automatically 
asses if driver is tired and in that case, raise a proper alert. It 
is widely used as a standard component of rest 
recommendation systems. Our approach is based on 
combination of computer vision algorithms for face detection 
and eyes detection. Additionally, we have tested our 
implementation in controlled environment on a real ADAS 
platform board. 
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I. INTRODUCTION

AIN goal of Advance Driver Assistance System 
(ADAS) is to provide safer environment for driver 

and to contribute to traffic safety in general. ADAS is 
constantly providing new solutions for non-trivial real 
world problems like automated freeway driving, which is 
addressed by lane detection algorithm [1], pedestrian 
detection [2], road signs recognition [3], automated 
parking [4], driver fatigue detection [5] and many more. 
Driver monitoring has a special place among these 
algorithms, as it is addressing the driver’s fatigue problem, 
which is responsible for serious number of road accidents.  

This paper provides detailed description of an 
algorithm design and implementation for the 
aforementioned driver monitoring. Driver’s face and eyes 
position are used for detecting if driver is paying attention. 
Implemented algorithm is based on a Viola-Jones object 
detection framework (2001) [6]. The algorithm is suitable 
because it can be implemented in a real-time fashion and 
was specially motivated by frontal face detection. It will 
not found a face if the driver is turned to the side.
Moreover, after the face was found, eye center detection 
algorithm is implemented using common face proportions 
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(to locate the eyes region) and weighted matrix sum (to 
detect the iris). 

II. RELATED WORK

Detection of driver’s fatigue level represents one of the 
most researched topics when it comes to ADAS 
applications [5]. In general, there are few different 
approaches. First one combines readings from multiple 
sensors that are attached to driver. Conclusions are drawn 
using a fusion of collected data. For example, researchers 
have used heart rate measurements for this purpose [7].

Some may found usage of sensors too intrusive for real 
world use case. As often used alternative, driver is 
recorded with some camera equipment and computer 
vision algorithms are applied in order to detect where the 
driver is looking and if he/she pays attention to the road. 
Solution described in this paper can be classified into this 
group. 

Additionally, there are methods that consider driving 
patterns as a main indicator of driver tiredness [8].

Finally, it might be important to note one major 
difference between these approaches. When detecting long 
term drowsiness it is more suitable to use sensor or pattern 
methods. However, if we are trying to prevent accident that 
might occur as a result of imminent distraction, computer 
vision based methods are proven to be more beneficial. 

III. ALGORITHM IMPLEMENTATION

The implemented algorithm can be divided into few 
phases. These phases and their connections are shown in 
Fig. 1.   

Fig. 1. High level algorithm diagram 
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Phases “Grayscale & Crop” and “Resize” can be 
grouped into one phase – named “Input image 
preprocessing”. Those steps are shown separated in Fig.1. 
because it is important to see that resized image is input 
only for face detection (reasons will be given later). 

A. Input Image preprocessing 
Firstly, BGRA frame that is produced by camera is 

converted to grayscale. The reason for doing this is 
because a grayscale image is a requirement for Viola Jones 
algorithm for face detection (described in phase B) and it 
is also well suitable for iris detection.  

Besides that, we took advantage of the fact that we 
need to detect only one face, which by assumption 
occupies large area in center of input frame. Since face 
should be centered, we cropped 35% of frame’s width, 
because we do not want to preprocess and later analyze 
parts of image where there is no chance for face or eyes to 
be found. As the result of these simple preprocessing steps, 
image that is suitable for eyes and iris detection was 
successfully formed. 

It is already mentioned that we search for a very large 
face. Having that in mind, we concluded that input image 
can be downscaled in purpose of getting face detection 
algorithm that works faster and achieves the same 
accuracy. This cannot be applied for eyes and iris detection 
because iris occupies only small portion of image and 
working with small image would damage detection quality. 

B. Face detection 
VJ framework can be divided in two phases. First 

phase is a preparation phase and it consists from Haar 
feature selection and AdaBoost training, while second is a 
face detection phase. Haar features can be thought of as 
convenient rectangle shaped filters (shown on Fig. below). 

 
Fig. 2. Haar features 

 
It was observed by Viola and Jones that the grayscale 

image of human face has some special characteristics. For 
example, eye region of image is darker than the rest. 
Furthermore, vertical nose region is distinctively brighter. 
Filters shown in Fig. 2. are applied to a face image and 
sums of pixels in brighter regions of rectangles are 
subtracted from the dark ones. Given value is then 
compared to some threshold which is used to determine if 
current region is the region we are interested in. Some 
observations to be made are that there are 2 types of two-
rectangle features, 2 types of three-rectangle features and a 
single type of four-rectangle features (considering 
symmetry in our deduction process). Smallest rectangle for 
first feature left to right from Fig. 2. is 1x2 pixels and 
because of that width must be an even number, which also 
stands for height of the second feature. Similarly, for third 
feature left to right, width must be divisible by 3. When 
listed limitations for described features are included and 
24x24 pixels base filter (it is standard detection window 
size) is used, there is about 160K features which is too 
much for a real time application to examine. AdaBoost 
training is used to select the best features that will provide 
the most information about scanned part of image. As a 

result of the first phase, complete set of features that will 
be used for face detection is determined. First phase can be 
done only one time, whereas we can run face detection 
using that data many times. In general, this is a good 
approach since there are no performance penalties in actual 
face detection that are related to preparation phase of the 
algorithm. After features are selected, they shall be applied 
to the image.  

In general, on a single image one can expect human 
faces in many sizes. For example, one face may fit in a 
50x50 pixels bounding rectangle, while other might be 
better placed in 30x30 pixels bounding rectangle. If the 
standard detection window of 24x24 pixels is used, it is not 
difficult to see that some faces might not fit into it. 
Because of that, feature detection is run on an image 
pyramid with intuition that at some level in pyramid both 
faces will fit into 24x24 rectangle (of course not at the 
same level). Image pyramid consists of sequence of images 
down sized by some factor. Pseudo-code is given as 
follows: 
 

 
Fig. 3. Face detection pseudo-code 

 
Output of this algorithm is an array of rectangles that 

represent founded faces. It is possible that one face is 
founded in more than one phase (more than one image in 
image pyramid). Because of that, we need to group all 
rectangles that have at least 65% overlapping, which was 
determined empirically. 

Finally, even after this step, more than one face can be 
found (for example someone can watch the road over the 
driver’s shoulder). In that case, the rectangle that is closest 
to the image center is chosen.   

Output of face detection phase is one rectangle that 
represents driver’s face, if the face was found or invalid 
rectangle otherwise.   

C. Eyes and iris detection 
First step of eyes center detection algorithm is to crop 

input image to already detected face rectangle. Standard 
biometric proportions are then applied to further reduce 
processing to rectangles that contain only left and right 
eye. These proportions are shown in Fig. 4. Blue rectangle 
represents face whereas green rectangles represent eye 
regions. 
 



 

 
Fig. 4. Biometric proportions 

 
These regions are input to iris detection phase. We 

used a fact that iris is darker then sclera around it and we 
developed a custom algorithm that uses weighted matrix 
sums. Matrix used can be thought of as some kind of 
convolution kernel. It is populated with floating point 
values that are concentrically reduced by factor k from 
inside out. An example is shown in Fig. 5. 
 

1   1   1   1   1   1   1 
1   1.25 1.25 1.25 1.25  1.25  1 
1   1.25  1.56 1.56 1.56  1.25  1 
1  1.25 1.56 1.95 1.56  1.25  1 
1  1.25 1.56 1.56 1.56  1.25 1 
1   1.25 1.25 1.25 1.25  1.25  1 
1   1  1  1  1  1  1 

Fig. 5 Weight matrix, k=1.25, dimension = 7 
 

  Matrix dimension must be odd number and it depends on 
eye region size. Coefficient  k, used to calculate matrix 
values, is empirically determined value. Before applying 
this matrix on surroundings of each pixel, we have done 
one more matrix modification - normalization. This means 
that we have divided each element of matrix with sum of 
initial matrix that is not normalized (Fig. 6). Total sum of 
all coefficients in normalized matrix equals 1. 
 

0.0171  0.0171  0.0171  0.0171  0.0171  0.0171  0.0171 
0.0171  0.0214  0.0214  0.0214  0.0214  0.0214  0.0171 
0.0171  0.0214  0.0267  0.0267  0.0267  0.0214  0.0171 
0.0171  0.0214  0.0267  0.0334  0.0267  0.0214  0.0171 
0.0171  0.0214  0.0267  0.0267  0.0267  0.0214  0.0171 
0.0171  0.0214  0.0214  0.0214  0.0214  0.0214  0.0171 
0.0171  0.0171  0.0171  0.0171  0.0171  0.0171  0.0171 

Fig. 6. Normalized weight matrix (from Fig.5.) 
 

For each considered pixel, weighted sum of its 
ambience is calculated. When whole image has been 
processed, iris should contain pixel for which the sum was 
minimal. Intuition behind algorithm is that we want to 
punish more bright pixels near center of applied filter, then 
pixels on the edge of filter. Moreover, these punishments 
should happen gradually because of fact that neighbor 
pixels are also very important for correctness of algorithm. 

When center of eye is determined, next task is to 
deduce if eye is opened or closed. Again, our approach 
was associated with weight matrices. Let’s consider 
grayscale image of closed eye for a moment. In the center 
of this image we have a strong line of dark values that 
correspond to eyelashes. However, when eye is opened, 
such line cannot be established (Fig. 7). With this 

distinction to guide us, we constructed another weight 
matrix with values vertically progressing from center of 
matrix to the top and bottom. It should be clear that this 
matrix is applied on top of eye center pixel which lies in 
middle (Fig. 8). Additionally, matrix width is reduced by 
50% (25% on each side) in order to eliminate border noise 
(Fig. 8). As well as previously presented concentric matrix, 
this matrix was also normalized. 

 

             
Fig. 7. (a) Eye close    (b) Eye open 

 
Finally, a criterion if eye is open was formed by comparing 
quotient of average pixel value in region of interest and 
weighted matrix sum against the threshold. This threshold 
was established after series of experiments. 
 

 
Fig. 8. Second weighted matrix position 

 

D. Drowsiness score calculation 
Final phase of described algorithm is calculation of 

drowsiness score. Drowsiness score is value in range 
between 0 and 10. This range is divided into three 
intervals: 

 0-3 low 
 3-7 medium 
 7-10 high 

New score is calculated based on previous score 
PrevScore and output of face and eye detect phases for 
current frame.  
Difference between intervals is: 

 If PrevScore is in low interval, then score twice 
faster decreases than it rises 

 If PrevScore is in medium interval, then score 
decreases and rises at the same rate 

 If PrevScore is in high interval, then score twice 
faster rises, than it decreases 

When score is in low interval, we can tell that driver is 
not distracted at all. In case of medium and high score, 
driver is drowsy and system should eventually alert the 
driver. 
 

IV. EVALUATION 
Described algorithm gives the best results if camera and 

light source are placed in front of the driver. Algorithm 
output used for verification of detected regions is shown in 
Fig. 9.  
 



 

 
(a)             (b) 

 
(c)          (d) 

Fig. 9. Algorithm output examples 
 

Image (a) shows a case when a face is found, eyes are 
open and driver is looking ahead. In this case, drowsiness 
score is decreasing depending on its current value. 

Image (b) shows that our algorithm also works well in 
case when driver does not look ahead. It is natural for a 
driver to look left or right in order to check side mirrors or 
to address their attention to some other road event. It 
should be clear that drowsiness score should not rise in this 
case. 

Image (c) shows driver with closed eyes and red 
rectangle shows that algorithm detected that eyes are not 
opened. This may be a serious problem if driver is 
sleeping. However, it may be the case that camera took the 
frame when they were blinking. No matter what happened 
drowsiness score will rise. 

Image (d) shows case when driver turns head to some 
side. In that case face detect algorithm will not find 
driver’s face and that is sign that driver is not paying 
attention to the road. Not all rotations are sanctioned, 
whereas in this particular image head is completely turned 
right. Of course, score that measures distraction will 
increase.  

The algorithm was tested on real ADAS platform 
board. It works as real-time algorithm (about 20 frames per 
second) with high level of accuracy. The main reason for 
good driver monitoring performance is minimal impact of 
wrongly classified frames due to high framerate and the 
manner of drowsiness score calculation. The algorithm was 
implemented only for demo purposes and detailed 
statistical evaluation will be part of future work. 

The algorithm was not tested at night because it 
requires infrared cameras which were not available at the 
time. 

V. CONCLUSION 
In this paper we described one implementation of 

driver monitoring algorithm, which is in early stage of 
development. Implemented algorithm is not state of the art, 
but we have achieved some solid results. There is more 
than one way we can improve this algorithm: 

 Using infrared cameras would give better input 
images –   we would have images with the same 
illumination level, so light would not be a factor. 

 Using advanced and more accurate methods for iris 
detection which are based on Bayesian 
classification of extracted features. 

 Integration with data coming from the car itself, 
like current speed, steering pattern etc. 

 Creating more sophisticated drowsiness score 
calculation scheme and testing it in actual vehicle. 

First two ideas do not require usage of additional 
equipment. Consequently, working on these ideas will be 
our first step. Upon successful completion of these steps, 
further refinements can be implemented during the in car 
testing. 
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