
Abstract —Fast expansion of Advanced Driver Assistance
Systems (ADAS) market and applications has resulted in a
high demand for various accompanying algorithms. In this
paper we present an implementation of Driver monitoring
algorithm. Main goal of the algorithm is to automatically
asses if driver is tired and in that case, raise a proper alert. It
is widely used as a standard component of rest
recommendation systems. Our approach is based on
combination of computer vision algorithms for face detection
and eyes detection. Additionally, we have tested our
implementation in controlled environment on a real ADAS
platform board.

Keywords — Advanced Driver Assistance Systems, driver
monitoring, eyelid detection, face detection

I. INTRODUCTION

AIN goal of Advance Driver Assistance System
(ADAS) is to provide safer environment for driver

and to contribute to traffic safety in general. ADAS is
constantly providing new solutions for non-trivial real
world problems like automated freeway driving, which is
addressed by lane detection algorithm [1], pedestrian
detection [2], road signs recognition [3], automated
parking [4], driver fatigue detection [5] and many more.
Driver monitoring has a special place among these
algorithms, as it is addressing the driver’s fatigue problem,
which is responsible for serious number of road accidents.

This paper provides detailed description of an
algorithm design and implementation for the
aforementioned driver monitoring. Driver’s face and eyes
position are used for detecting if driver is paying attention.
Implemented algorithm is based on a Viola-Jones object
detection framework (2001) [6]. The algorithm is suitable
because it can be implemented in a real-time fashion and
was specially motivated by frontal face detection. It will
not found a face if the driver is turned to the side.
Moreover, after the face was found, eye center detection
algorithm is implemented using common face proportions

Aleksandra Simić is with the Faculty of Mathematics, University of
Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia (phone: 381-65-
3835662; e-mail: asimic@matf.bg.ac.rs).

Ognjen Kocić is with the Faculty of Mathematics, University of
Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia (phone: 381-65-
2235055; e-mail: ognjen@matf.bg.ac.rs).

Dr. Milan Bjelica is with the Department of Computer Engineering
and Communications, Faculty of Technical Sciences, 21000 Novi Sad,
Serbia (email: milan.bjelica@rt-rk.com)

Milena Miloševic is with RT-RK Institute for Computer Based
Systems, Novi Sad, Serbia (email: milena.milosevic@rt-rk.com)

(to locate the eyes region) and weighted matrix sum (to
detect the iris).

II. RELATED WORK

Detection of driver’s fatigue level represents one of the
most researched topics when it comes to ADAS
applications [5]. In general, there are few different
approaches. First one combines readings from multiple
sensors that are attached to driver. Conclusions are drawn
using a fusion of collected data. For example, researchers
have used heart rate measurements for this purpose [7].

Some may found usage of sensors too intrusive for real
world use case. As often used alternative, driver is
recorded with some camera equipment and computer
vision algorithms are applied in order to detect where the
driver is looking and if he/she pays attention to the road.
Solution described in this paper can be classified into this
group.

Additionally, there are methods that consider driving
patterns as a main indicator of driver tiredness [8].

Finally, it might be important to note one major
difference between these approaches. When detecting long
term drowsiness it is more suitable to use sensor or pattern
methods. However, if we are trying to prevent accident that
might occur as a result of imminent distraction, computer
vision based methods are proven to be more beneficial.

III. ALGORITHM IMPLEMENTATION

The implemented algorithm can be divided into few
phases. These phases and their connections are shown in
Fig. 1.

Fig. 1. High level algorithm diagram

Driver monitoring algorithm for Advanced
Driver Assistance Systems

Aleksandra Simić, Ognjen Kocić, Milan Z. Bjelica and Milena Milošević

M

978-1-5090-4086-5/16/$31.00 ©2016 IEEE

Phases “Grayscale & Crop” and “Resize” can be
grouped into one phase – named “Input image
preprocessing”. Those steps are shown separated in Fig.1.
because it is important to see that resized image is input
only for face detection (reasons will be given later).

A. Input Image preprocessing
Firstly, BGRA frame that is produced by camera is

converted to grayscale. The reason for doing this is
because a grayscale image is a requirement for Viola Jones
algorithm for face detection (described in phase B) and it
is also well suitable for iris detection.

Besides that, we took advantage of the fact that we
need to detect only one face, which by assumption
occupies large area in center of input frame. Since face
should be centered, we cropped 35% of frame’s width,
because we do not want to preprocess and later analyze
parts of image where there is no chance for face or eyes to
be found. As the result of these simple preprocessing steps,
image that is suitable for eyes and iris detection was
successfully formed.

It is already mentioned that we search for a very large
face. Having that in mind, we concluded that input image
can be downscaled in purpose of getting face detection
algorithm that works faster and achieves the same
accuracy. This cannot be applied for eyes and iris detection
because iris occupies only small portion of image and
working with small image would damage detection quality.

B. Face detection
VJ framework can be divided in two phases. First

phase is a preparation phase and it consists from Haar
feature selection and AdaBoost training, while second is a
face detection phase. Haar features can be thought of as
convenient rectangle shaped filters (shown on Fig. below).

Fig. 2. Haar features

It was observed by Viola and Jones that the grayscale

image of human face has some special characteristics. For
example, eye region of image is darker than the rest.
Furthermore, vertical nose region is distinctively brighter.
Filters shown in Fig. 2. are applied to a face image and
sums of pixels in brighter regions of rectangles are
subtracted from the dark ones. Given value is then
compared to some threshold which is used to determine if
current region is the region we are interested in. Some
observations to be made are that there are 2 types of two-
rectangle features, 2 types of three-rectangle features and a
single type of four-rectangle features (considering
symmetry in our deduction process). Smallest rectangle for
first feature left to right from Fig. 2. is 1x2 pixels and
because of that width must be an even number, which also
stands for height of the second feature. Similarly, for third
feature left to right, width must be divisible by 3. When
listed limitations for described features are included and
24x24 pixels base filter (it is standard detection window
size) is used, there is about 160K features which is too
much for a real time application to examine. AdaBoost
training is used to select the best features that will provide
the most information about scanned part of image. As a

result of the first phase, complete set of features that will
be used for face detection is determined. First phase can be
done only one time, whereas we can run face detection
using that data many times. In general, this is a good
approach since there are no performance penalties in actual
face detection that are related to preparation phase of the
algorithm. After features are selected, they shall be applied
to the image.

In general, on a single image one can expect human
faces in many sizes. For example, one face may fit in a
50x50 pixels bounding rectangle, while other might be
better placed in 30x30 pixels bounding rectangle. If the
standard detection window of 24x24 pixels is used, it is not
difficult to see that some faces might not fit into it.
Because of that, feature detection is run on an image
pyramid with intuition that at some level in pyramid both
faces will fit into 24x24 rectangle (of course not at the
same level). Image pyramid consists of sequence of images
down sized by some factor. Pseudo-code is given as
follows:

Fig. 3. Face detection pseudo-code

Output of this algorithm is an array of rectangles that

represent founded faces. It is possible that one face is
founded in more than one phase (more than one image in
image pyramid). Because of that, we need to group all
rectangles that have at least 65% overlapping, which was
determined empirically.

Finally, even after this step, more than one face can be
found (for example someone can watch the road over the
driver’s shoulder). In that case, the rectangle that is closest
to the image center is chosen.

Output of face detection phase is one rectangle that
represents driver’s face, if the face was found or invalid
rectangle otherwise.

C. Eyes and iris detection
First step of eyes center detection algorithm is to crop

input image to already detected face rectangle. Standard
biometric proportions are then applied to further reduce
processing to rectangles that contain only left and right
eye. These proportions are shown in Fig. 4. Blue rectangle
represents face whereas green rectangles represent eye
regions.

Fig. 4. Biometric proportions

These regions are input to iris detection phase. We

used a fact that iris is darker then sclera around it and we
developed a custom algorithm that uses weighted matrix
sums. Matrix used can be thought of as some kind of
convolution kernel. It is populated with floating point
values that are concentrically reduced by factor k from
inside out. An example is shown in Fig. 5.

1 1 1 1 1 1 1
1 1.25 1.25 1.25 1.25 1.25 1
1 1.25 1.56 1.56 1.56 1.25 1
1 1.25 1.56 1.95 1.56 1.25 1
1 1.25 1.56 1.56 1.56 1.25 1
1 1.25 1.25 1.25 1.25 1.25 1
1 1 1 1 1 1 1

Fig. 5 Weight matrix, k=1.25, dimension = 7

 Matrix dimension must be odd number and it depends on
eye region size. Coefficient k, used to calculate matrix
values, is empirically determined value. Before applying
this matrix on surroundings of each pixel, we have done
one more matrix modification - normalization. This means
that we have divided each element of matrix with sum of
initial matrix that is not normalized (Fig. 6). Total sum of
all coefficients in normalized matrix equals 1.

0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171
0.0171 0.0214 0.0214 0.0214 0.0214 0.0214 0.0171
0.0171 0.0214 0.0267 0.0267 0.0267 0.0214 0.0171
0.0171 0.0214 0.0267 0.0334 0.0267 0.0214 0.0171
0.0171 0.0214 0.0267 0.0267 0.0267 0.0214 0.0171
0.0171 0.0214 0.0214 0.0214 0.0214 0.0214 0.0171
0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.0171

Fig. 6. Normalized weight matrix (from Fig.5.)

For each considered pixel, weighted sum of its
ambience is calculated. When whole image has been
processed, iris should contain pixel for which the sum was
minimal. Intuition behind algorithm is that we want to
punish more bright pixels near center of applied filter, then
pixels on the edge of filter. Moreover, these punishments
should happen gradually because of fact that neighbor
pixels are also very important for correctness of algorithm.

When center of eye is determined, next task is to
deduce if eye is opened or closed. Again, our approach
was associated with weight matrices. Let’s consider
grayscale image of closed eye for a moment. In the center
of this image we have a strong line of dark values that
correspond to eyelashes. However, when eye is opened,
such line cannot be established (Fig. 7). With this

distinction to guide us, we constructed another weight
matrix with values vertically progressing from center of
matrix to the top and bottom. It should be clear that this
matrix is applied on top of eye center pixel which lies in
middle (Fig. 8). Additionally, matrix width is reduced by
50% (25% on each side) in order to eliminate border noise
(Fig. 8). As well as previously presented concentric matrix,
this matrix was also normalized.

Fig. 7. (a) Eye close (b) Eye open

Finally, a criterion if eye is open was formed by comparing
quotient of average pixel value in region of interest and
weighted matrix sum against the threshold. This threshold
was established after series of experiments.

Fig. 8. Second weighted matrix position

D. Drowsiness score calculation
Final phase of described algorithm is calculation of

drowsiness score. Drowsiness score is value in range
between 0 and 10. This range is divided into three
intervals:

 0-3 low
 3-7 medium
 7-10 high

New score is calculated based on previous score
PrevScore and output of face and eye detect phases for
current frame.
Difference between intervals is:

 If PrevScore is in low interval, then score twice
faster decreases than it rises

 If PrevScore is in medium interval, then score
decreases and rises at the same rate

 If PrevScore is in high interval, then score twice
faster rises, than it decreases

When score is in low interval, we can tell that driver is
not distracted at all. In case of medium and high score,
driver is drowsy and system should eventually alert the
driver.

IV. EVALUATION
Described algorithm gives the best results if camera and

light source are placed in front of the driver. Algorithm
output used for verification of detected regions is shown in
Fig. 9.

(a) (b)

(c) (d)

Fig. 9. Algorithm output examples

Image (a) shows a case when a face is found, eyes are
open and driver is looking ahead. In this case, drowsiness
score is decreasing depending on its current value.

Image (b) shows that our algorithm also works well in
case when driver does not look ahead. It is natural for a
driver to look left or right in order to check side mirrors or
to address their attention to some other road event. It
should be clear that drowsiness score should not rise in this
case.

Image (c) shows driver with closed eyes and red
rectangle shows that algorithm detected that eyes are not
opened. This may be a serious problem if driver is
sleeping. However, it may be the case that camera took the
frame when they were blinking. No matter what happened
drowsiness score will rise.

Image (d) shows case when driver turns head to some
side. In that case face detect algorithm will not find
driver’s face and that is sign that driver is not paying
attention to the road. Not all rotations are sanctioned,
whereas in this particular image head is completely turned
right. Of course, score that measures distraction will
increase.

The algorithm was tested on real ADAS platform
board. It works as real-time algorithm (about 20 frames per
second) with high level of accuracy. The main reason for
good driver monitoring performance is minimal impact of
wrongly classified frames due to high framerate and the
manner of drowsiness score calculation. The algorithm was
implemented only for demo purposes and detailed
statistical evaluation will be part of future work.

The algorithm was not tested at night because it
requires infrared cameras which were not available at the
time.

V. CONCLUSION
In this paper we described one implementation of

driver monitoring algorithm, which is in early stage of
development. Implemented algorithm is not state of the art,
but we have achieved some solid results. There is more
than one way we can improve this algorithm:

 Using infrared cameras would give better input
images – we would have images with the same
illumination level, so light would not be a factor.

 Using advanced and more accurate methods for iris
detection which are based on Bayesian
classification of extracted features.

 Integration with data coming from the car itself,
like current speed, steering pattern etc.

 Creating more sophisticated drowsiness score
calculation scheme and testing it in actual vehicle.

First two ideas do not require usage of additional
equipment. Consequently, working on these ideas will be
our first step. Upon successful completion of these steps,
further refinements can be implemented during the in car
testing.

ACKNOWLEDGMENT
This work was partially supported by the Ministry of
Education, Science and Technological Development of the
Republic of Serbia, under grant number: TR32041.

REFERENCES
[1] M. Aly, “Real time Detection of Lane Markers in Urban Streets” in

IEEE Intelligent Vehicles Symposium, Eindhoven, The
Netherlands, June 2008

[2] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian
Detection: An Evaluation of the State of the Art” in IEEE
Transactions on Pattern Analysis and Machine Intelligence
(Volume: 34, Issue: 4, April 2012)

[3] S. Hossain, Z. Hyder, “Traffic Road Sign Detection and
Recognition for Automotive Vehicles” in International Journal of
Computer Applications, Volume 120 - Number 24, 2015

[4] H. Al-Absi, J. Devaraj, P. Sebastian, V. Yap, “Vision-based
automated parking system” in 10th International Conference on
Information Sciences Signal Processing and their Applications
(ISSPA), 2010

[5] Hang-Bong Kang, “Various Approaches for Driver and Driving
Behavior Monitoring: A Review” in Computer Vision Workshops
(ICCVW), 2013 IEEE International Conference, 2-8 Dec. 2013.

[6] P. Viola, M. Jones, “Rapid object detection using a boosted
cascade of simple features” in Computer Vision and Pattern
Recognition, 2001. CVPR 2001.

[7] J. Vicente, P. Laguna, A. Bartra, R. Bailón, “Drowsiness detection
using heart rate variability” in Medical & Biological Engineering
& Computing, June 2016, Volume 54, Issue 6, pp 927–937

[8] J. Kim, S. Kim, H. Jung, B. Lee, E. Chung, “Driver's Drowsiness
Warning System Based on Analyzing Driving Patterns and Facial
Images” in 23rd International Technical Conference on the
Enhanced Safety of Vehicles (ESV), 2013

